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In this paper we solve the fundamental mixed problem and the second 
fundamental problem of the theory of elasticity for the axially symmetric 
deformations of a circular cylinder of finite length. Two variations of 
the mixed problem are solved: I) arbitrary stresses are prescribed on the 
ends of the cylinder and displacements are prescribed on the lateral sur- 
face, and 2) arbitrary displacements are given on the ends of the 
cylinder and arbitrary stresses are prescribed on the lateral surface. A 

particular case of the first problem is the bending of a thick circular 
plate whose lateral surface is rigidly clamped and which is acted upon 
by a load applied over one of the end surfaces. 

The mixed problem for the cylinder was examined by Filon [l]; however, 
the boundary conditions pertaining to the tangential displacements on 
the ends of the cylinder were not satisfied. This problem was solved by 
an approximate method in [21. Other mixed problems concerning the elastic 
deformations of a finite length have been investigated in a number of 

papers [3,141. 

1. Stresses prescribed on the ends of the cylinder and 
displacements prescribed on the lateral surface. It is required 

to find functions u(r, z) and ~(r, z) which in the interior of the 

cylinder 0 Q r < R, - 1 Q z < 1 satisfy the Lark differential equations 

2(1-o) ae 1 a 
[( 

au aw 
1-2~ a2 ----r--ar =O r ar a2 )I 

2 (1 - Q) ae -..-_+;$-a~=0 
i-220 dr 

(1-l) 

and which on the surface of the cylinder satisfy the conditions 
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w (BP 4 = x (z), rrz (r’, 1) - fl (r), rrz (1.P - 4 = f2 (4 (1.2) 
u (R, 2) = ‘Ic, (z), 51 (r, 1) == (PI (r,, 6, (r, - 1) =$)2(r) (1.3) 

Here a is Poisson’s ratio, G is the sh ear modulus, 8 is the dilata- 

tion, and uz(r, z) and -rrz(r, z) are the stress tensor components, viz. 

‘Ihe boundary functions ql(r), ql(r-), fl(r), and f,(r) are assumed to 

a&it, of a Fourier representation in terms of Bessel functions of the 

first kind 

q(r) = jj cp,(i)Jo(h,r), /i(r) = i fJi'J,(Q) (i= 1, 2) (O,( r Q R) (1.5) 

VI=1 n-1 

where h,,R = n, are the positive roots of the equation J,(p) = 0 

R R 

(p,(i) = 2 s rcpi (r) J, (Lo) dr, 
2 

R”JP (IQ fn@) = lpJ12(p,) s rfi (r) J, (Lr) dr (1.6) 
0 0 

and the functions yr(z) and x(z) are Fourier series 

m=1 

To solve the problem we introduce the Papkovich-Neuber representation 

of the solution of the La& equations. In the case of axially-syrnnetric 

deformations this takes on the following form in cylindrical coordinates 

i 
U= ------aza,+a)-q&) 4(1- 0) ar 

[(4o - I)% -i_ r$] 

1 (W 
WC dr.-- -+,+a)- &[2$5+&] 

G(1- a) a2 ar az 

where 6, 6,, and 6, are arbitrary harmonic functions. Setting in (1.8) 

a I = 0, 8 = 
C&)Zo (k,r) 

Rj cos qp, 
CJO W,r) 

" = k,210(k,R) 'OS 
mn (2 - 1) 

k,210(k 

77% 
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we obtain the following particular solutions of the Lam6 equations (1.1): 

here Cm, Cl(‘) are arbitrary constants, and I,(k,r), fl(kllr) are 
modified Bessel functions 

&pm+ (m = i, 2, . . .) (f.fO) 

Further, by setting in (1.8) 

we obtain a second type of particular solution of pqations (1.1) 

where A n (I), A (2), n A n (3), A (I) are arbitrary n 

We assume a series solution of the boundary 
abovh 

constants. 

value problem fomuiated 

It is evident that the term containing the arbitrary constant n2 
satisfies Fquations (1.1). 
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The satisfaction of the boundary conditions (1.2), together with the 

consideration of the expansions (1.5) and (l.?), leads to three 

identities. Equating the Fourier coefficients of the functions on the 

left and right sides of these identities, we obtain the following rela- 

tions for the unknown constants 

c (1) 
m = - 2cm -o)kmXm 

A (3) 
A,@’ 

n = h [ 1 - 26 - h,Ztih,Z] + $qj?) ffk2)1 J,(h,R) 
n II 

A (1) 
A fd) _ n 
n ---+1-22a-- h,Lcotb k,L] + J&?Y -fn'2']J&Jq 

n 11 

If we satisfy the remaining boundary conditions (1.3), taking 

pansions (1.5) and (1.7) into account, we obtain three equations 

(5.14) 

the ex- 

oCaa 
03 

2(i-aa)@-22a) + 2 (-- l)m&(b 4 + (1.13) 
m=l 

+$ f.Ip- R,(31]J,(~,r) = $ ~(*)~~(~~~j 

?%=I W=l 

in which 

G 
F3 try m, = (I - a) IO (k,R) t 

_I_ 
2 

Cmq) (lc.d) + 

+ Cm [2 (1 + 6) Ill (h?F) + bJ'1 (kmr)l} 
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Rnflf I: ._!-- %I 
Ja (A,, RI 

A “’ cot& A,,1 -j- 2GA,“’ cotit X,1 -i-_a n 
- ga A,,(l) j I 

R,,@) = i ‘.aG 
Jl (%, RI 

-?& A,,(" td.,$ + 2GA %J&+ I n n - -_* A,“‘1 
1 1 

With the help of Formulas (1.14), the expressions for the quantities 
R (I), R (2) and R (31 

n n n are easily transformed into the form 

g2’ = 
GA,("L,(" 

(1 -a) J1 (h,R) + [h 
C2) - jny wtb h,Z 

(1.18) 

where 

In order to equate the Fourier coefficients of the functions on the 

left and right sides of Equations (1.15) and thereby to find relations 

for the unknown constants Cm, A,(l), Ant2) and aZ, we expand the func- 

tions (1.16) and (1.17) in Fourier series 

F, (2, n) =t $ Fo(U (n) + ; Fm(l’ fn) eos mx (;I If (-tdr<l) 
m-1 

F,(F, m)= ; F,(2) (r+4,(Lr), 

(i.Zi) 

Jo (hnR) = 0 (OGr<R) 
n=l 

It is not difficult to calculate the Fourier coefficients and thereby 

to obtain the expressions 

sA,(.‘) 
F,f”(?z) = - I tl _ a)h * + 

_ f 
= 

@I] 

n 

A (l)lim~) If,,(l) - fnf2)l Jl (I.,$) 
(1.22) 

Fm("(n) = 2 i; - a) k, + i?lG (km* + h;) (m = 2, 4, . . .) 



980 C.M. Volov 

Here 

Now, setting the series (1.21) and the expansion of unity 

into Equations (1.15) and equating Fourier coefficients, we obtain four 
relationships. Transforming these relationships with the help of Formu- 
las (1.18) and (1.221, we find the constants +, C., A,(l), and Amf2) 

c m=- A,W,~’ + Em(‘) (m = 2, 4, . . .) (1.26) 

c*f&_ 

(n = 1, 2,. . .) (1.2’7) 

;FKn(‘) = 2 0 -b)k, OL, [f,(l) - fnW Jx (A* RI 

%n c + $m - 2 2Cl (k,,,* + A,,‘, 1 Tl=l 
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25 

{ 

4 (1 ---a) 40 
- R (l-2@ h,L,O) - 

_ 2 (1 -a> 
R IRG x 

M J1@“;R) [fs(l) 

84 

q,(Z) = (1 -;)LJ;? R) [ (fJ1) + jnm)ullh&J + cp,(l) - f&42’] - 

n 

- jmj 

(1.29) 

From Equations (1.25) to (1.28) we obtain two infinite systems of in- 
finite algebraic equations for the unknown constants A,(') and A,(*) 

A (1) 
n 5 tH,P’H,t’ As(‘) - 

m=2,4.... 8~1 

- 
Pl(1 

+ b,(l) (n = 1, 2,. I .f (1.302 

A (2) 
n = & 

Here 

&p = - &) i Em(I)Hm? + T),(l) 
n 

m=2,4,... 
00 

(1.32) 

I. m=l,s. . . . 

Thus, the boundary conditions have been satisfied, and theesehies 
(1.13) represent a solution of the bounda? value problTy)that has been 
posed above. The constants a*, Ant3’, A,,(’ , Cm, and C, , entering 
into the series (1.13), are uniquely expressed in terms of the constants 
A (l’* A (*I, and the Fourier coefficients of the boundary functions by 
~&IS of’EZquations (1.24) to (1.26) and (1.14). The constants A (I’ and 

A ‘*I are found from the infinite systems (1.30) and (1.31). Ifnthere 
ezists a unique bounded solution of the infinite systems (1.30) and 
(1.31)) then the series (1.13)) which gives the solution of the problem, 
converges uniformly in the interior of the cylinder - 1 g z G 2, 
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,=kR ,I 4 
1 -kH 

2 10 (kR) kR Io’(kR) 
Il(kR)-- II’(kli) - 

(2.7) 

1 1 w3) 
Here aaR = y, are the positive roots of the equation Jl(y) = 0. From 

the interlacing of the roots of the Hessel functions Jo(x) and Jl(r) it 
follows that [lSl 

L < ant L-h > % (n = 1, 2, * I ‘1 (2.9) 

Now, from the identities (2.3) and (2.6) and the first inequality 
(2.9) we have 

IO @RI 2<- 11 (W -- 
11 (W kR 10 tkR) ’ 

(2.10) 

Since A,, + I > a,,, it follows that 

Hence 

or by virtue of (2.4) and (2.7) 

Since 

kR 1 
E 

-~]<kR[~--] 

then from the last inequality and (2.10) we obtain 

(2.1 if 

In the investigation of the infinite systems (1.30) and (1.31) we 
limit ourselves to Poisson’s ratios o that vary over the interval 
0 < u < l/3. We denote sums of the moduli of coefficients of the systems 
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(1.30) and (1.31) by T,(l) and Tn(‘) respectively. We bound them from 

above. It is seen that 

T,(O) = 86” 
lP1(1-- 0) h&,(l) 

‘j $ (2.13) 

8=1 S=l 

and 

Lm>O. L,(l) > 0, 
si&2h,a--22h,a 

L,(Z) = ---- 
2 cash * h, a >O 

which follows from the identity (2.4) and formulas (1.20), (I.Io), and 

(i.23). Applying (2.14), (2.4), (2.5) and (1.20) we find 

f? fk, 4 
+ Okrn R [I - IO3 (km R)]} = 

R 2 - 20 - (I- 2~) km R ff, (km R)/f, (km R) --‘II (km R)/fo (km Rfl 

=2I 4 - 43 - km R [L, (km R)lIl (km R) - 11 (km R)lfo (km R)l 

or 

rm \< $ f ttrn* a) (M = i, 2, 3, . *) (2.15) 

Here 

f @?w 61 = 
2-25--(1-25)tm 

4-45-tm ) 
tm =k,,R[ p:;)) - ;;:_;;I 

1 m O m 

By virtue of the inequality (2.10), the argument t, varies over the 

interval 0 < t_ < 2. Let us determine the largest value of the function 

f(t,1 a) on thZ interval 0 Q t, 
tive 

< 2 for various values of a. The deriva- 

V 
aim = 

2 (55 - 453 - a) 
(4 - 45 - &)a 

does not vanish on the interval 0 G t ~ < 2. Since the trinomial 

5a - 402 - 1 has the roots a,, = l/4 and u1 = 1, we have 
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af /%n<a (0<~<1/4); af /&n>o~ (1/4<a 6 112) 

Therefore it follows that 

f&n, g<ffo, a)=l----1/z (0 < a 6 114) 

f(t,,,, Q)\<f(2, ~)=i-(i-w/(1-24 (1/4<0<1/2) 
(2.16) 

We set 

whereby 

2el = { (145: :; - 20) 
(U<G\(1/4) 

(1/4<O<ii2) 
(2.17) 

01 > 0 @<a<1 13) (2.18) 

Hence by virtue of (2.16) and (2.17) the inequality, (2.15) can be 

rewritten as 

rm < $ (1 - 24) (m = 1, 2, .) 

From which the inequalities (2.12) can be rewritten as 

Knit’ 1 + T,(O) (n = I, 2, . . .) (2.19) 

m=2.4.. 

T,,(z) < A (I - 281) 

21L,@' 
; I Kn:’ 1 (r&=1,2, . ..) (2.20) 

m=1.3,. 

where 

1 H,,,n(e'I = 
8A., 1 a [ (mn / 21)a+ h,2] - (mn / 2l)a 1 

Z-l [ An2 + (mn / 21)*]‘1 < 

21 8 [(2/n)~,~1[a[(2/n)h,~la+(1-~)m21 
\<_7iin {[(2 / n) h, llA + ma}a 

(2.21) 

Furthermore, substituting the series (2.2) into the second equation 

of (2.131, we obtain 

T,(O) = 29 
(I - 2q A, 1L,(l) (n = i, 2, . . *) 

We have the identities 

(2.22) 



(2.23') 

m=l,s..,. 

-+ i &&ji= W~~~~~~~~2) -f 
m-=2.4,... 

-ki nk/2 (k,~m’)’ = @” $ +&% (nk / 2) 

m=d.8.... 

The quantity T,(l), by virtue of (2.191, (2.21) and (2.231, may be 

bounded in the following manner: 

where we have used (1.19) and (2.22). From Formula (2.17) it follows 

that 

l-ze,--i_iz,>o 

lherefore 

T,,(l) < 1 - 20, (n = 1, 2, . . *) (2.24) 

Inequalities (2.18) and (2.24) show that the infinite system (1.30) 

is fully regular for values of u in the range 0 < CJ < l/3. Further, using 

(2.20). (2.21) and (2.23) we bound T,,(') 

Hence, applying (1.19), we find 
(2.25; 

I',,(*) < i - er- 
I 
Q~ - 2 (i - 28,)(1 -+&-I, 

2&l 

n 
tp=g-$-$ (n=I*2,..,) 

n 

It is seen from inequalities (2.18) and (2.25) that for arbitrary u 
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in the interval 0 < o < l/3 and for arbitrary dimensions 1 and R of the 
cylinder, a number n,, can be found such that for all n > no the follow- 
ing inequality will be fulfilled 

lhis means that the system (1.31) will be fully quasiregular for all 

the indicated values of o. 

By the use of Formulas (1.32), (1.23) and (1.29), it is easy to show 
that the free terms of the infinite systems (1.30) and (1.31) are bounded 
if the Fourier coefficients of the boundary functions are of the order 

l& = 0 (m-l), x, = 0 (m-l), f,(r) = 0 (r/;;>, cp,fif = 0 (pi) (i = f, 2) 

By the same token, the fully regular infinite system (1.30) has a 
unique bounded solution. ‘Ihe question of the existence of a unique 
bounded solution of the fully quasiregular infinite system (1.31) re- 
duces to the existence and uniqueness of the solution of a finite system 
of na equations in na unknowns. If the solution of this system of finite 
equations exists and is unique, then a bounded solution of the infinite 
system (1.31) exists and is unique (171 , 

3. Displacements prescribed on the ends of the cylinder 
and stresses prescribed on the lateral surface. It is required 
to find functions u(r, z) and w(r, L) which satisfy the Lad differ- 
ential equations (1.1) in the interior of the cvlincer 0 < r- Q R, 
- 1 G t ,< 1 and which on its surface satisfy the conditions 

n (r, I) = fl (r), u(r, - 0 - fa (r), L(R, 2) = 0 

w (r, 4 = ‘PI (4, w(r, - 4 = ‘Fz (r), o, (R 2) = \I, (4 

Here a,(R, z) is the normal stress on the lateral surface of 

(34 
(3.2) 

the 
cylinder. The functions fl(r), fz(r), cp,(rl and q2(r) are assumed to be 
representable in Fourier series 

where hnR = yn are positive roots of the equation Jr(y) = 0 

n=l 

R 
2 
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and the function v(t) is assumed to have the Fourier series 

We seek a series solution of the boundary value problem in the form 

u= 
i 

U,(3) + ; a,@), w=a,+ 2:*--;, a32 + 5 w,(3) + jg', (3.5) 

m=l n=1 m--1 &I 

Here 

hnt3) = - {$ Cm(l) -II (km I‘) + Cm [(ha - 2;fl (km I+) + k,, I+10 km rjl} X 

x 
sin [mn (2 - I)/24 

2 (1 - 0) k,ll (km H) (3.6) 

1 
h(“) = 4 II - a)rinbh,lJo(h,R) 

(An@)‘sinhh,z + A,,(~)tihnLrhhnz + 

+An(l)~h,l Zritihnz + A,(‘) ~coshhn~} J, (h, r) 

where al, a3, n, m I ,, j ,, I ,, 
C C (l) A (l) A (‘) A (3) and A (4) are unknown con- n 

stants. 

'Ihe functions (3.6) are obtained by means of Formulas (1.8). Ihere- 

fore the functions given by the series (3.5) satisfy the differential 

equations (1.1). 'Ihe satisfaction of the boundary conditions (3.1), with 

(3.3) taken into account, leads to the following relations for the un- 
known constants: 
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A,,@) = - A,(l) 1 tonhh, I + 2 (1 - o) [f,,(r) + f,,(a) ] J, (A., R) (3.8) 

A,,(3) = - A,(2) I cotit h, I -j- 2 (2 - a) [fn@) - fn’2’] J, (h, Ii) 

Further, by satisfying the boundary conditions (3.3), we obtain three 

equations. We then compare Fourier coefficients of the functions entering 

into these equations, taking into account expansions (3.3), (3,4), and 

the expansion of unity 

m=l 

As a result of calculations analogous to those carried out in Section 

1, we obtain relationships for the determination of the unknown con- 

stants, which, after some transformations, take on the form 

(3.9) 
2a 

al = - x (1 -CT) 
m=2,4.... 

Q 

a3=-m(i-25j ; -$T -!- 1(: 1 is) I’po(‘f - %Pf (3.10) 

m=1,3,... m 

Cm=-& 

ms 

A,(‘) Hm:’ + -...sL + Em(l) 
InaT Lm (m=l, 3,. ..) (3.11) 

n=l 

cm = - & ; A,(2) H;,$” -t En@) {rn = 2,4, . . .) (3.12) 
m ?l=l 

C,Hm.?’ + qp (n = 1,2, . . .) (3.13) 

m=1,3.... 

(?a = 1,2, * . .) (3.14) 

m==2.4,... 

Jlere 

(3.15) 

&(') = (3 - ‘b)tanhh, I? - co,h:;; 1 , 

n 
L(2) = (3 - 4o)cotb 5,I +Si& 

$16) 
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H (1’ = 2k, %,’ - 6 G,,’ + kmsH a, P,’ - 
mn Z(h ‘f k I 

&$’ = *CA,‘+ kmSfl (3q 

n m a)* fi @ns + k,*Y 

q,(S) = 2 (I -6)~;(k" A) [fp*pn'"' + (p,cat + (f,(l) - fn(2)) ccth h, Z] (3.21) 
n 

From Equations (3.10) to (3.14) we obtain two infinite systems of 
linear algebraic equations for the unknown constants cB 

cm = & H,:' H$' C, - 16~9 

n RI (I- 20) rnd& 
r=1.3,... 

(m= 1, 3,. ..) (3.22) 

where 

a,(‘) = _ & 
rn’ 

H,:' T+ + Em(f) + -$&a [ qj,(‘) - q@j 
m 

-1 (3.24) 
lfrn$' Yp + gm'2' 

By means of (3.8), (3.9), (3.10), (3.13) and (3.14), the constants 

al, a3, 
A 0) A (2) A (3) A (4), c (11, which enter into the series 

(3.5), are” uniqu&y expmessed ?n term: of the constants C, and the 

Fourier coefficients of the boundary functions. The constants Cn are in 
turn to be found from the infinite systems (3.22) and (3.23). If there 
exists a unique bounded solution of the infinite systems, then the solu- 
tion which is represented by the series (3.5) will be unique and within 
the cylincer - 1 Q z Q I, 0 4 r < R the series (3.5) will converge uni- 
formly and admit of double, termwise differentiation. 

We next examine the infinite systems. To do this, we bound the sums 

of the moduli of the coefficients of the systems (3.22) and (3.23) from 
above, denoting them by T,(l) and ‘I’s’“’ respectively. It is seen that 
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(3.25) 

(3.26) 

(3.27) 

which follaws from Formulas (3. IS), (3. IQ, the identity (2.71, and the 
inequality 0 < D G 0.5. Using the inequality 

(3.28) 

the identity (2.23) and the expression (3.16) for I,,(*), we bound r,((‘) 

or 

(3.29) 

In exactly the same way, using (3.281, (2.23) and (3.161, we bound 
r (1) 

n 

rz$ Q 
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Or 

l?,(l) \( + f vn, 6) (n = 1, 2, . . .) 

where 

1 - (1 --iBa) t, 
f(L Q) = CJ_&__& ’ 

In [181, the following bound 

2h, 1 
t, = - 

sinh2h, 1 (O<$I<lI 

for the function f(t,, a) was found 

f (&I, 6) < 1 - 00 (n = I, 2, . . .) 

(& = 
{ 
z(l--a)/(3-443) (O<adl/4) 
(1 - 30) / (1 - 25) (1140<~2) 

where 

f4l>o for O<G<1/3 (5.ZO) 

Therefore 

l?,(l) < 4 (1 - 0,) (n = 1, 2, . . .) (3.31) 

In view of (3.29) and (3.31), the bounds (3.25) can be rewritten as 

T,(l) < $ (1 - 0,) T, + T,(O) 

I’,,,@) < 21 R (3-b) 
T, 

(m=1.3,...) 

(m = 2, 4, . . .) 
( H$' 1) (3.32) 

Using (3.17) and the identities (2.71, (2.81, we bound Tm 

lhus, applying inequality (2.11) and Formula (3.151, we obtain 

((2 - 24 k, R [$ I:: ;; - I] + $$? - 

- (I- 26) km R [ ;“: ;:m, ;; - I] - eR} = 
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(3.33) 

Since 

we find, by substituting k, = srr/ZZ into (3.26)‘ that 

T,W = Wl 4s’ 
R (1 - 2s) mnL, = (1- 25) kmRLm (3.3~) 

Hence, by virtue of (3.33) and (3.341, the bounds (3.32) take on the 
form 

L@~<f--43+ i---p w4J+ (*_&y; RL (m = f, 3, . . .) 
m * m m 

TnP < %-_& 1 + 
6--105 

(3 - 4s) km RL, (m = 2, 4, . . .) 

T,,,a)<f +- {+ km ;L, 1(3 - 5a) (’ - %) + *Al} 
(m = 1,3, . . .) (3.35) 

2 (3 - 55) 
(3 - 4s) km RL, 1 (m = 4,. . .) 

B is mmm frsa htplities (3.W d (3.35) that for an arbitrary 
value B ia the interval 0 < Q < l/3 ar& for arbitrary 
R of the cylinder, a number q, can be found such that 
will have 

dimensions 1 and- 
for all na > m. we 

1 - 20 
_-- (3_2,&!~~~~mR>o tm>%d 3-b 

It is furthermore obvious that the second inequality can be satisfied 
for arbitrary o in the interval 0 < u < l/2. This means that for 
0 < u < l/3 the infinite system (3.22) is fully quasiregular fl?l , whereas 
the infinite system (3.23) is fully quasiregular for 0 < u < l/2. 

It is easy to show that the free terms (3.24) of the infinite systems 
(3.22) eed (3.23) are bounded if the Fourierxoefficients of the boundary 
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functions are of the order 

an = 0 (1)s f,(f) = 0 (n-‘/z), ‘p,(i) = 0 (n-‘/2) (i = 1, 2) 

Therefore the question of the existence of a unique solution of each 
of the infinite systems for the indicated values of u reduces to the 
existence and uniqueness of a finite system of II+ equations in mo un- 
knowns [171 . 

4. Displacements prescribed on the surface of the cylinder. 
The boundary conditions of the problem can be written as 

W (r, I) = /I (r), W(r, - I) = fz (r)., n (R, 2) = 11, (2) 

u (r, I) = ‘PI (r), n(r, - I)’ = (p2 (F), w(R, 2) = X(z) 

Here 

q(z)=++ gcosm”(;J-~) , X (2) = fj X, sin mn ‘“,, ‘) (-JBz<J) 
m=l *=1 

where AR = y, are the positive roots of the equation Jl(y) = 0. 

We seek a solution of the boundary value problem in series form 

m 10 (km R) km 
co 

u = & + ’ 2 
m=1 

I1 (km R) - ‘7,1c1) + nzlu.(s) 

[(i - 25) a, - + a,] + z i k;“l:(;:R;’ Wm(l) + i w,(s) 

(4.1) 

rn=l "Z-1 

Here waC1) and ~a(‘) are given by Formulas (1.9) 

4,(S) = L R 
4(i- n 

o)dah~ I [A,%,,d.,Zlinhh,,z + A,(%orhh,,z + A,(‘)zsinh&,z $ 

+ A,,%n& Z zwmh,, z] J, (h, F) 

&p) = bt R 
4 (1 - a)siu&, J I 

- &(3)tmhh,, ~coshh,, z - A,(4) rinhh,, z - A,(‘) zcx,rh&,z - 

- A,Wmd.,Z zaid,z+ ~[A,%n&z + A,%&Zc&z]} Jo&F) 
n 

LR = m, J, (m) = 0 

where ua(‘) and w,,( ‘) are particular solutions of Fquations (1.1). 
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‘Ihe boundary conditions are satisfied by the method set forth in 
Section 1, and by the use of the expansions 

bl + b,z = ~{b,[(-~)m-l]-Zb,[l +(-l)“]}--&sinmn(j-r) 
Ml 

(--1<~<O 

we obtain the following relationships for the unknown constants entering 
into the series (4.1) : 

a, = f [j&l) + joq 

a, = $- (1 - a)3po, (1 - 26) a, = +a, + *T [f&l) -f,(s)] 

C,,,(l)=-2C, 
II 
41~-2++&‘;~;;] _ 4(11-@ \Pm 

1 m 

A,,@, = +? [3-44a [f,(l) + f*(B)] 
n 

A,(‘) = A!!!L[3_44a I - h-1 colh.h,Z] - 
n 

A,,(l) = -i?- 
H,,,:’ C,,, 

RL,(‘) 
Jo @, R) + &l(l) (n = i, 2, . * .) (4.2) 

m=e.4.... 

(n = 1, 2, . * *I (4.3) 

C ,,, = $& 5 Jo (h, R) I&,,?’ An(l) + h(l) (m = 2, 4, . . .) ,(4.4) 
n=1 

c, = $ $ J, (h, I?) I&,$’ A,(*) + P,,,@) 
m 

(m = i, 3, . . a) (4.5) 
n=1 

&p’ = 2(1-o) m 

RL,“’ (x RJ,, ($$$ + k,S) + ‘pn(‘) + %@’ + 
m=2,4,... 

+ R$$R, + [ft@ - fR(*)l co(b h, z, 

&Jl) = 2 (1 -a) 4an*m 

RL,@) m=1,8,. . . RJo (4 4 (ha’ + km’) ’ 

+ WI(l) - qn@) + [f,(l) + p]tulha, 2 I 
2 (I- 4 pm(l) = ILm { clrnzo (km RI z (k R~ + i [fn”’ - fn"'1 JO (An 4 km 

1 m 1 (An’ + km’) 
+x,-k 

tl=1 

+ 21[(1-22a)as-a,/21 

(i - 0) msc I 
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pm(2) = 2 ‘iL- a) {“‘;l:pk’k;l+J + ; KY + fn'2'l Jo (&I m km 
m m 1 hn’ + La) +xm+$} 

Tl=l 

L,,(') = (3-40) coth h,l -_-g$-$ , L(2) = (3-44a)amhh,l +&ql (4.6) 

L,=(4-44a) ;p;; 
m 

- kmR[$'$;- -I] (4.7) 

Hmt' = 2&1krn~ 
R(h,a + k,a)a ’ 

H (2) = %I~~WI 
mn 

1 (km2 + An’)’ (4.8) 

We introduce new unknown constants Xn and YR by settiq 

A,(l) = xn 
Jo (L 4 ’ 

A,(2) = yn 
Jo Al 4 (4.9) 

We change the subscript n to s in Fquations (4.2) and (4.3) Msd sub- 
stitute into these equations (4.4), (4.5) and (4.9). lhereby we obtain 
two infinite systems of linear algebraic equations in the t&n-s Xn 

and Y,, 

x,= 8 L,. -$ -$ +n%mi?Xn+ rP (s = 1, 2, . . .) (4.10) 
m=2.4,... n=1 

Y, = Al 5 fj k H~)H,:) Y, + ~~(2) (s = i, 2, . . .) (4.11) 
8 ?nal,3.... n=1 

where 

yp = - " 5 Hm;) 

RLJ1) 
&.,(I) + Jo (h, a) &(I) 

TlI=2,4,... 

5 

(4.12) 

r&2) -Rj& H,:' Pmc2) + J,,(h,R)b,@) 
m=1.9.... 

We next show that these infinite systems are fully regular for 

O<a < l/2. We denote the sums of the moduli of the coefficients of the 
systems (4.10) and (4.11) by T,( ‘) and TSt2) respectively. It is seen 
that 

T,(l) = -!- 5 H,,,l" I?,,,, 
Ls(‘) 

T,(2) = LG 5 H,,,fk,, (s = I, 2,...) (4.13) 
m=2,4,... 6 m=1.3.... 

Here 

I‘, = 5 k H,,,:), L,(l) > 0, L‘(2) > 0, Ll>o 
ll=1 



Defornationr of a solid circular cylinder 997 

where the inequalities follow from (4.61, (4.7) and the identity (2.8). 

Using (4.8), (2.8) and (4.71, we find 

lherefore we obtain the following bounds for the quantities (4.13) 

(s = 1, 2, . . .) (4.14) 

Substituting H_( ‘) and kl = nnr/21 into (4.143 and using the ex- 
pressions (2.23) and (4.6) we obtain a bound for Ts(“) 

T,(l) < * - 2 (i - 6) (3 - 47) 

Since 2(1 - 4)(3 - 40) > 1 for 0 < u < l/Z, we have 

%>O, if O<a<l/,; f&4=0, if d =1/s 

In exactly the same way we find a bound for Tbt2) 

(4.16) 

T‘(a) < 2(&.(P) i $2h, Icaschfl& I 
3--ba+2k 

_- 
,~Wnch2)*,1 

It is easy to show that 

Therefore the bound (4.17) may be rewritten as 

T,(2) < i - 8,; 03 = 1 - 4 (11 @S ( s-1,2.... 

0 < fl d VA ) (4.18) 
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8s > 0, if 0<~<‘/,;%3=0, if ls=lJ2 

From inequalities (4.15) to (4.18) it follows that the infinite 

systems (4.10) and (4.11) are fully regular for 0 < u < l/2 and regular 

foro=1/2. lh e f ree terms (4.12) of the infinite systems (4.10) and 

(4.11) are bounded if the Fourier coefficients of the boundary functions 

are of the order 

*rn = O(l), xm = O(l), fnci) = O(G), ‘P,(i) = 0 o&i) (i = 1, 2) 

By the same token, each of the systems (4.10) and (4.11) has a unique 

bounded solution of 0 < u < l/2. 
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